Метод преобразований Лапласа для решения дифференциального уравнения — различия между версиями

Материал из Мегапедии
Перейти к: навигация, поиск
м
м
 
Строка 20: Строка 20:
 
== Ссылки ==
 
== Ссылки ==
 
*Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1970, стр. 272.
 
*Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1970, стр. 272.
*[[Участник:Logic-samara]]
+
[[Категория:Математика]][[Категория:Уравнения]]
[[Категория:Математика]]
 

Текущая версия на 13:58, 18 февраля 2025

Метод преобразований Лапласа — это способ решения дифференциальных уравнений с помощью преобразований Лапласа.

Описание метода

Суть метода преобразований Лапласа состоит в следующем:

1) перевод с помощью преобразований Лапласа дифференциального уравнения в пространство изображений в алгебраическое уравнение;

2) решение алгебраического уравнения и разложение решения на простые выражения (для дробно-рациональных выражений - методом неопределённых коэффициентов);

3) обратный перевод с помощью обратных преобразований Лапласа решения алгебраического уравнения в решение дифференциального уравнения.

Линейные дифференциальные уравнения 2-ого порядка:

Пример 1

МПЛ11.JPG

Пример 2

МПЛ12.JPG

Пример 3

МПЛ13.JPG

Другие дифференциальные уравнения:

Ссылки

  • Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1970, стр. 272.