Площадь сегмента эллипса — различия между версиями
(начало) |
м |
||
Строка 1: | Строка 1: | ||
[[файл:СГЭ01.JPG|thumb|300|Сегмент, перпендикулярный большой оси эллипса]] | [[файл:СГЭ01.JPG|thumb|300|Сегмент, перпендикулярный большой оси эллипса]] | ||
− | [[файл: | + | [[файл:СГЭ02.JPG|thumb|300|Сегмент, перпендикулярный малой оси эллипса]] |
'''Площадь сегмента эллипса''' — это число, характеризующее сегмент [[Длина дуги эллипса|эллипса]] в единицах измерения площади. | '''Площадь сегмента эллипса''' — это число, характеризующее сегмент [[Длина дуги эллипса|эллипса]] в единицах измерения площади. | ||
Версия 13:50, 10 февраля 2021
Площадь сегмента эллипса — это число, характеризующее сегмент эллипса в единицах измерения площади.
Сегмент эллипса — это часть эллипса, отсекаемая прямой.
Рассмотрим (меньшие) сегменты эллипса, отсекаемые прямой перпендикулярной одной из осей эллипса.
Обозначения
Введём обозначения:
a — большая полуось эллипса;
b — малая полуось эллипса;
h — высота сегмента;
x0 — абсцисса крайней точки сегмента;
y0 — ордината крайней точки сегмента;
r0 — расстояние (крайний радиус) от центра эллипса до крайней точки сегмента;
α — угол между осью симметрии сегмента и радиусом крайней точки сегмента;
Sсегм.элл — площадь сегмента эллипса.
Формулы:
Площадь сегмента, перпендикулярного большой оси эллипса
Площадь сегмента, перпендикулярного малой оси эллипса
Вывод формул:
Площадь сегмента, перпендикулярного большой оси эллипса
1-ый способ
- Для вывода используется формула "площадь плоской фигуры" в прямоугольных координатах.
- Для нахождения интеграла используется формула 3 интегралы функций с корнями.
2-ой способ
- Для вывода используется формула "площадь плоской фигуры" в прямоугольных координатах.
- Для нахождения интеграла используется метод замены переменных и переход к
полярным координатам.
Площадь сегмента, перпендикулярного малой оси эллипса
1-ый способ
- Для вывода используется формула "площадь плоской фигуры" в прямоугольных координатах.
- Для нахождения интеграла используется формула 3 интегралы функций с корнями.
2-ой способ
- Для вывода используется формула "площадь плоской фигуры" в прямоугольных координатах.
- Для нахождения интеграла используется метод замены переменных и переход к
полярным координатам.
Площадь сегмента
Площадь меньшего сегмента равна разности площадей соответствующего сектора и треугольника (дополняющего сегмент до сектора).
Площадь большего сегмента равна сумме площадей соответствующего сектора и треугольника (дополняющего сектор до сегмента).
Сумма площадей меньшего и большего сегментов равна площади эллипса.
Другие фигуры:
- плоская фигура;
- круг;
- сегмент круга;
- сектор круга;
- сегмент правильного многоугольника;
- сектор правильного многоугольника;
- серп;
- сегмент параболы;
- эллипс;
- сегмент эллипса;
- сектор эллипса;
- серп эллипса;
- сегмент гиперболы;
- арка синусоиды;
- арка косинусоиды;
- фигура, ограниченная тангенсоидой и осью абсцисс;
- фигура, ограниченная котангенсоидой и осью абсцисс;
- арка циклоиды;
- сектор кардиоиды;
- фигура, ограниченная цепной линией и осью абсцисс;
- фигура, ограниченная трактрисой и осью абсцисс;
- сектор лемнискаты Бернулли.