Одноканальная СМО с отказами — различия между версиями
(начало) |
|||
Строка 45: | Строка 45: | ||
*Овчаров Л.А. Прикладные задачи теории массового обслуживания, «Машиностроение», М.,1969. | *Овчаров Л.А. Прикладные задачи теории массового обслуживания, «Машиностроение», М.,1969. | ||
*[[Участник:Logic-samara]] | *[[Участник:Logic-samara]] | ||
− | [[Категория:Случайные процессы]][[Категория:Логистика]] | + | [[Категория:Математика]][[Категория:Случайные процессы]][[Категория:Логистика]] |
Текущая версия на 04:59, 10 апреля 2023
Одноканальная СМО с отказами — это система массового обслуживания, в которой есть один канал обслуживания, но нет очереди: если заявка приходит, в момент, когда канал свободен, то она немедленно обслуживается каналом, если заявка приходит — когда канал занят, то заявка покидает систему (теряется).
Содержание
Описание модели
На вход одноканальной СМО поступает простейший поток заявок с интенсивностью λ.
Интенсивность простейшего потока обслуживания канала μ.
Если заявка застаёт канал свободным, она принимается на обслуживание и обслуживается каналом.
Если заявка застаёт канал занятым, то она получает отказ (покидает систему не обслуженной).
После окончания обслуживания заявки освобождается канал.
Состояние рассмотренной системы будем связывать с числом заявок, находящихся в системе.
Граф состояний
Рассмотрим множество состояний системы:
S0 – в системе нет заявки, канал свободен;
S1 – в системе имеется заявка, она обслуживается каналом.
Система дифференциальных уравнений
Система дифференциальных уравнений, описывающих поведение системы, имеет вид:
Рассмотрим стационарный режим работы системы (при t→∞).
Система уравнений принимает вид:
Решим систему относительно p0,p1.
В результате получаем решение системы:
Основные характеристики системы
Другие одноканальные СМО:
Ссылки
- Овчаров Л.А. Прикладные задачи теории массового обслуживания, «Машиностроение», М.,1969.
- Участник:Logic-samara