Объём эллиптического параболоида — различия между версиями
м |
м |
||
Строка 27: | Строка 27: | ||
[[файл:ОПЭ02.JPG]] | [[файл:ОПЭ02.JPG]] | ||
[[файл:ОПЭ03.JPG]] | [[файл:ОПЭ03.JPG]] | ||
− | *Для вывода используется формула ''' | + | *Для вывода используется формула '''[[объём трёхмерной фигуры]]''' в прямоугольных координатах. |
== Другие фигуры: == | == Другие фигуры: == | ||
{{Список ОФТ}} | {{Список ОФТ}} |
Версия 07:59, 11 февраля 2021
Объём эллиптического параболоида — это число, характеризующее объём, ограниченный параболоидом и плоскостью (перпендикулярной оси симметрии), в единицах измерения объёма.
Эллиптический параболоид — это поверхность, образующаяся при скольжении одной параболы по другой параболе.
Обозначения
Введём обозначения:
H — высота эллиптического параболоида;
p — фокальный параметр первой параболы;
q — фокальный параметр второй параболы;
a — первая полуось эллипса верхнего основания;
b — вторая полуось эллипса верхнего основания;
z=x2/(2p)+y2/(2q) — каноническое уравнение эллиптического параболоида;
Sосн — площадь основания (эллипс с полуосями a и b);
Vэллипт.параб — объём эллиптического параболоида c высотой H.
Формула
- Заметим, что при q=p формула объёма эллиптического параболоида превращается в формулу объёма параболоида вращения.
Вывод формулы
- Для вывода используется формула объём трёхмерной фигуры в прямоугольных координатах.