Уравнение плоскости, проходящей через точку перпендикулярно прямой

Материал из Мегапедии
Перейти к: навигация, поиск

Уравнение плоскости, проходящей через точку перпендикулярно прямой, задаётся равенством нулю скалярного произведения вектора-разности радиусов-векторов точек и направляющего вектора прямой.

Обозначения

Введём обозначения:

ВЕК79.JPG — радиус-вектор точки плоскости;

ВЕК70.JPG — радиус-вектор точки;

ВЕК81.JPG — направляющий вектор прямой.

Формулы:

Векторная форма: УПТПП01.JPG

Координатная форма:

УПТПП02.JPG

Другие уравнения:

Ссылки

  • Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1970.
  • Выгодский М.Я. Справочник по высшей математике. М.: Наука, 1964, стр.185.
  • Участник:Logic-samara