Смешанное произведение — различия между версиями
м |
м |
||
Строка 18: | Строка 18: | ||
== Ссылки == | == Ссылки == | ||
*Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1970. | *Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1970. | ||
− | + | [[Категория:Математика]][[Категория:Векторы]] | |
− | [[Категория: |
Текущая версия на 15:17, 23 октября 2024
Смешанное произведение векторов — это число, равное векторно-скалярному произведению трёх векторов, т.е. сначала берётся векторное произведение первых двух векторов, а затем — скалярное произведение полученного вектора и третьего вектора.
Геометрический смысл смешанного произведения трёх векторов — это объём параллелепипеда, построенного на этих векторах, взятый со знаком "+", если эти векторы образуют правую тройку, и со знаком "-", если эти векторы образуют левую тройку.
Содержание
Обозначения
Формула
Свойства
Другие операции:
- нахождение длины вектора;
- умножение вектора на число;
- возведение в квадрат координат вектора;
- извлечение корня из координат вектора;
- сложение векторов;
- вычитание векторов;
- умножение координат векторов;
- деление координат векторов;
- скалярное произведение;
- векторное произведение;
- смешанное произведение;
- двойное векторное произведение;
- нахождение угла между векторами;
- ортогонализация векторов.
Ссылки
- Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1970.