Разложение на множители
Разложение на множители — это нахождение множителей и их степеней в произведении, дающем исходное натуральное число.
Содержание
Обозначения[править]
Введём обозначения:
n – натуральное число;
k – количество простых чисел для n;
m – количество множителей для n;
pi – i-ое простое число;
ji – i-ый множитель;
si – степень i-ого множителя.
Алгоритм разложения на множители[править]
Входные данные: n; k; {p1,p2,...,pk}.
Выходные данные: m; {j1,j2,...,jm}; {s1,s2,...,sm}.
Алгоритм работает при наличии во входных данных необходимых множителей.
Формула разложения на множители[править]
Алгоритм можно использовать для разложения на заданные множители при отсутствии во входных данных некоторых необходимых множителей. Для этого необходимо во входных данных указывать только заданные множители, а в выходные данные необходимо добавить величину d, где d – дополнительный множитель для n, после учёта заданных множителей.