Транспортная задача с промежуточными пунктами — различия между версиями

Материал из Мегапедии
Перейти к: навигация, поиск
м
Строка 73: Строка 73:
 
'''6.'''Определяем новое значение целевой функции '''L=L-ΔoΔx''' и новый базис '''Bo=Bo\(i<sub>x</sub>,j<sub>x</sub>)U(i<sub>o</sub>,j<sub>o</sub>)'''.
 
'''6.'''Определяем новое значение целевой функции '''L=L-ΔoΔx''' и новый базис '''Bo=Bo\(i<sub>x</sub>,j<sub>x</sub>)U(i<sub>o</sub>,j<sub>o</sub>)'''.
 
Переходим к пункту 3.
 
Переходим к пункту 3.
== Пример ТЗПП ==
+
== Пример 1 ==
 +
=== Транспортная задача ===
 +
[[файл:ТЗПП001.png]]
 +
=== Транспортная таблица ===
 +
[[файл:СЗУ001.png]]
 +
=== Допустимое решение ===
 +
[[файл:МП001.png]]
 +
=== Решение методом потенциалов ===
 +
[[файл:МП001.png]]
 +
[[файл:МП011.png]]
 +
[[файл:МП002.png]]
 +
[[файл:МП012.png]]
 +
[[файл:МП003.png]]
 +
[[файл:МП013.png]]
 +
== Пример 2 ==
 +
=== Транспортная задача ===
 
[[файл:ТЗПП01.png]]
 
[[файл:ТЗПП01.png]]
 
=== Транспортная таблица ===
 
=== Транспортная таблица ===

Версия 15:06, 18 июля 2022

Математическая модель эквивалентной ТЗПП
Математическая модель классической ТЗПП

Транспортная задача с промежуточными пунктами (ТЗПП) – это транспортная задача оптимизации перевозок с использованием промежуточных (транзитных) пунктов. ТЗПП позволяет оптимизировать мультимодальные транспортные перевозки.

Постановка задачи ТЗПП

Пусть имеется m поставщиков (A1,A2,…,Am), n потребителей (B1,B2,…,Bn) и k промежуточных пунктов (C1,C2,…,Ck), однородного продукта. Пусть заданы объёмы поставок ai продукта поставщиком Ai, объёмы потребностей bj в продукте у потребителя Bj, объёмы дополнительных потребностей ct в продукте в промежуточном пункте (на складе) Ct, причём если ct<0, то дополнительные потребности являются избытком. Пусть известны транспортные расходы dti на перевозку единицы продукта от поставщика Ai на склад Ct, и транспортные расходы qtj на перевозку единицы продукта со склада Ct к потребителю Bj и необходимо определить план перевозок с минимальной суммой транспортных расходов, тогда транспортная задача с промежуточными пунктами формулируется следующим образом:

ТЗПП.JPG,

где xti — объём перевозок продукта от поставщика Ai на склад Ct,

ytj — объём перевозок продукта со склада Ct к потребителю Bj.

Условия разрешимости

Для разрешимости задачи необходимо выполнение условий баланса:

ТЗПП02.JPG,

то есть необходимо, чтобы объём поставок продукта поставщиками минус объём потребностей в нём у потребителей равнялся объёму дополнительных потребностей продукта на складе. В этом случае транспортная задача с промежуточными пунктами называется закрытой.

Постановка эквивалентной задачи

Введём новые обозначения:

Файл:ТЗПП0.JPG.

Математическая модель эквивалентной задачи принимает следующий вид:

ТЗППэ.JPG.

Условия разрешимости эквивалентной задачи

Для разрешимости эквивалентной задачи необходимо выполнение условий баланса:

ТЗПП03.JPG,

то есть необходимо, чтобы объём поставок продукта на склады и объём отрицательных поставок со складов (потребностей в продукте) равнялся объёму дополнительных потребностей в продукте на складах. В этом случае транспортная задача с промежуточными пунктами называется закрытой.

Постановка классической задачи

В экономической транспортной системе имеются n конечных пунктов (np поставщиков продукции и n-np потребителей продукции) и m промежуточных пунктов (складов). Продукция перевозится от поставщиков на склады, будем обозначать эти перевозки положительными переменными xij≥0, (i=1,m,j=1,np). А со складов часть продукции перевозится потребителям - их обозначим отрицательными переменными xij≤0, (i=1,m,j=np+1,n). Объёмы поставок поставщиков обозначим положительными числами bj>0, (j=1,np), объёмы потребностей потребителей обозначим отрицательными числами bj<0, (j=np+1,n). Если склад имеет дополнительные (внутренние) потребности продукции, то обозначим их положительными числами ai>0, (i=1,mp). Если склад имеет излишки продукции или нулевые остатки, то обозначим их числами ai≤0, (i=mp+1,m). Транспортные тарифы на перевозку единицы продукции от поставщика на склад выразим положительными числами cij>0, (i=1,m,j=1,np), транспортные тарифы на перевозку со склада к потребителю выразим отрицательными числами cij<0, (i=1,m,j=np+1,n). Тогда математическая модель задачи принимает вид:

ТЗППк.JPG.

Классическая транспортная задача с промежуточными пунктами может быть представлена в виде таблицы

ТТ.JPG.

Условия разрешимости классической задачи

Для разрешимости классической задачи необходимо выполнение условий баланса:

ТЗ02.JPG,

то есть необходимо, чтобы алгебраическая сумма объёмов продукта промежуточных пунктов равнялась алгебраической сумме объёмов продукта конечных пунктов. В этом случае транспортная задача с промежуточными пунктами называется закрытой.

Метод решения ТЗПП

Необходимо найти начальное опорное решение, например, методом северо-западного угла для ТЗПП.

Затем транспортная задача с промежуточными пунктами решается обобщённым методом потенциалов для решения ТЗ, модифицированным с учётом отрицательных перевозок.

Метод северо-западного угла

Метод северо-западного угла для нахождения допустимого решения транспортной задачи с промежуточными пунктами аналогичен одноимённому методу для транспортной задачи и состоит в последовательном назначении перевозок для клеток транспортной таблицы, находящихся в верхних (северных) строках и в левых (западных) столбцах. Процесс заполнения клеток (распределения перевозок) для ТЗПП осуществляется в три этапа и продолжается до тех пор пока у поставщиков имеются нераспределённые положительные остатки или у потребителей имеются неудовлетворённые отрицательные потребности.

1.Сначала удовлетворяем дополнительные потребности складов (ai>0) за счёт поставщиков (bj>0), т.е. назначаем соответствующие положительные перевозки по формулам: xij=min(ai,bj), ai=ai-xij, bj=bj-xij.

2.Затем распределяем остатки грузов от поставщиков (bj>0) на последний используемый склад, т.е. начиная с последней заполненной строки по формулам: xij=bj, ai=ai-xij, bj=0.

3.Наконец, удовлетворяем потребности потребителей (bj<0), т.е. назначаем соответствующие отрицательные перевозки по формулам: xij=max(ai,bj), aij=ai-xij, bj=bj-xij.

Метод северо-западного угла реализуется с помощью алгоритма северо-западного угла для ТЗПП.

Метод потенциалов

1.Берём решение Xmxn и базис Zmxn, найденные с помощью алгоритма северо-западного угла для ТЗПП.

2.Определяем значение целевой функции L=ΣΣcijxij и базис опорного решения Bo={(i,j)|zij=1}.

3.Определяем оценку Δo и элемент (io,jo) с помощью алгоритма расчёта потенциалов для ТЗПП и оценок оптимальности.

4.Проверяем решение на оптимальность. Если Δo=0, то решение Xmxn - оптимальное и конец работы.

5.Определяем оценку Δx, элемент (ix,jx) и новое опорное решение Xmxn с помощью алгоритма перераспределения перевозок для ТЗПП.

6.Определяем новое значение целевой функции L=L-ΔoΔx и новый базис Bo=Bo\(ix,jx)U(io,jo). Переходим к пункту 3.

Пример 1

Транспортная задача

ТЗПП001.png

Транспортная таблица

СЗУ001.png

Допустимое решение

МП001.png

Решение методом потенциалов

МП001.png МП011.png МП002.png МП012.png МП003.png МП013.png

Пример 2

Транспортная задача

ТЗПП01.png

Транспортная таблица

СЗУ00.png

Нахождение допустимого решения

СЗУ11.png СЗУ01.png СЗУ12.png СЗУ02.png СЗУ13.png СЗУ03.png СЗУ14.png СЗУ04.png СЗУ15.png СЗУ05.png СЗУ16.png СЗУ06.png СЗУ17.png СЗУ07.png СЗУ18.png СЗУ08.png СЗУ19.png СЗУ09.png СЗУ20.png СЗУ10.png СЗУ21.png СЗУ22.png

Допустимое решение

МП00.png

Решение методом потенциалов

МП01.png МП11.png МП02.png МП12.png МП03.png МП13.png МП04.png МП14.png МП05.png МП15.png МП06.png МП16.png МП07.png МП17.png МП08.png МП18.png МП09.png МП19.png

Другие задачи:

Ссылки