СМО с взаимопомощью
СМО с взаимопомощью — это система массового обслуживания, в которой всегда есть взаимопомощь между каналами обслуживания: если заявка приходит, в момент, когда все каналы свободны, то она немедленно обслуживается всеми каналами, если заявка приходит - когда уже обслуживаются заявки числом меньше, чем число каналов, то она немедленно обслуживается частью каналов, иначе если заявка приходит - когда уже обслуживаются заявки числом меньше, чем число каналов и число мест в очереди, то она становится в очередь, в остальных случаях заявка покидает систему (теряется).
Содержание
Описание модели
На вход n-канальной СМО с m-очередью поступает простейший поток заявок с интенсивностью λ. Интенсивность простейшего потока обслуживания каждого канала μ.
Интенсивность потока обслуживания с взаимопомощью между каналами всегда равна nμ.
Если заявка застаёт все каналы свободными, она принимается на обслуживание и обслуживается всеми n-каналами одновременно, при этом производительность увеличивается в n-раз.
После окончания обслуживания все каналы освобождаются одновременно.
Если вновь прибывшая заявка застаёт в системе одну заявку, то она принимается на обслуживание: часть каналов обслуживает первую заявку, часть приступает к обслуживанию второй заявки. Разделение каналов совершенно произвольное.
Если система обслуживает k-заявок (k=1,n-1), то вновь прибывшая заявка принимается на обслуживание и все (k+1)-заявок обслуживаются n-каналами, распределёнными произвольно между заявками, но так, что все каналы заняты обслуживанием.
Попавшая на обслуживание заявка обслуживается до конца (заявки терпеливые).
Если обслуживание какой-либо заявки окончено, то освободившаяся группа каналов присоединяется к обслуживанию остальных заявок, находящихся в системе. Таким образом, при наличии в системе хотя бы одной заявки все n-каналов всё время будут заняты.
Если система обслуживает n-заявок (k=n), то каждая из них обслуживается одним каналом, а вновь прибывшая заявка встаёт в очередь и ожидает освобождения хотя бы одного из каналов.
Если в системе имеется (n+r)-заявок (r=1,m-1), то n-заявок из них обслуживаются и r-заявок ожидают в очереди, а вновь прибывшая заявка становится в очередь. Максимальное число мест в очереди m.
Если вновь прибывшая заявка застаёт в очереди m-заявок, то она получает отказ и исключается из обслуживания.
Состояние рассмотренной системы будем связывать с числом заявок, находящихся в системе.
Граф состояний
Рассмотрим множество состояний системы:
S0 – в системе нет ни одной заявки, все каналы свободны;
S1 – в системе имеется одна заявка, она обслуживается всеми n-каналами;
S2 – в системе имеется две заявки, они обслуживается n-каналами;
…;
Sk – в системе имеется k-заявок, они обслуживаются n-каналами;
…;
Sn – в системе имеется n-заявок, они обслуживаются n-каналами, очереди нет;
Sn+1 – в системе имеется (n+1)-заявок, n из них обслуживаются n-каналами, а одна заявка ожидает в очереди;
…;
Sn+r – в системе имеется (n+r)-заявок, n из них обслуживаются n-каналами, а r-заявок ожидают в очереди;
…;
Sn+m – в системе имеется (n+m)-заявок, n из них обслуживаются n-каналами, а m-заявок ожидают в очереди;
Система дифференциальных уравнений
Система дифференциальных уравнений, описывающих поведение системы, имеет вид:
Рассмотрим стационарный режим работы системы (при t→∞).
Система уравнений принимает вид:
Суммируя в системе уравнения с первого до i-го (i=1,n+m), получаем упрощённый вид системы.
Решим систему относительно p0,p1,…,pn+m.
В результате получаем решение системы:
Основные характеристики системы
При χ≠1 получаем
При χ=1 получаем
Другие СМО:
Ссылки
- Овчаров Л.А. Прикладные задачи теории массового обслуживания, «Машиностроение», М.,1969.
- Участник:Logic-samara