Основание перпендикуляра из точки к плоскости — различия между версиями
(начало) |
м |
||
Строка 3: | Строка 3: | ||
Введём обозначения: | Введём обозначения: | ||
− | [[файл: | + | [[файл:ВЕК79.JPG]] — радиус-[[вектор]] основания перпендикуляра; |
− | [[файл: | + | [[файл:ВЕК70.JPG]] — радиус-вектор точки; |
− | [[файл: | + | [[файл:ВЕК91.JPG]] — нормаль к плоскости; |
[[файл:ПЛО01.JPG]] — уравнение плоскости; | [[файл:ПЛО01.JPG]] — уравнение плоскости; |
Версия 15:40, 8 февраля 2021
Основание перпендикуляра из точки к плоскости — это точка пересечения перпендикуляра и плоскости.
Содержание
Обозначения
Введём обозначения:
— радиус-вектор основания перпендикуляра;
— отклонение точки от плоскости.
Формулы:
Координатная форма:
- Заметим, что формулы основания перпендикуляра из точки к плоскости являются частным случаем формул точки пересечения прямой и плоскости, при перпендикулярности прямой к плоскости.
Пример
Найти основание перпендикуляра из точки к плоскости.
Решение.
Другие формулы:
- Основание перпендикуляра из точки к прямой;
- Основание перпендикуляра из точки к плоскости;
- Точка пересечения перпендикуляра к двум прямым с первой прямой;
- Точка пересечения перпендикуляра к двум прямым со второй прямой;
- Точка пересечения прямой и плоскости;
- Точка пересечения трёх плоскостей;
- Точка, равноудалённая от двух прямых;
- Точка, равноудалённая от четырёх точек;
- Точка деления отрезка в данном отношении;
- Точка прямой, находящаяся от первой точки прямой до второй в данном отношении;
- Точка прямой, находящаяся перед первой точкой прямой до второй в данном отношении;
- Точка прямой, находящаяся от первой точки прямой за второй в данном отношении.