Предел — различия между версиями
м |
|||
(не показана 1 промежуточная версия этого же участника) | |||
Строка 22: | Строка 22: | ||
Пределом функции '''f{x}''' в точке '''a''' называется число '''A''', в '''ε'''-окрестность которого попадают все значения функции в точках из '''δ'''-окрестности точки '''a'''. | Пределом функции '''f{x}''' в точке '''a''' называется число '''A''', в '''ε'''-окрестность которого попадают все значения функции в точках из '''δ'''-окрестности точки '''a'''. | ||
− | |||
[[файл:ПРЕ01.png]] | [[файл:ПРЕ01.png]] | ||
=== Виды пределов === | === Виды пределов === | ||
− | |||
[[файл:ПРЕ011.png]] | [[файл:ПРЕ011.png]] | ||
=== Свойства пределов === | === Свойства пределов === | ||
Строка 51: | Строка 49: | ||
= Ссылки = | = Ссылки = | ||
*Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1970. | *Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1970. | ||
− | |||
[[Категория:Математика]] | [[Категория:Математика]] |
Текущая версия на 10:10, 18 февраля 2025
Предел — это некоторая величина, к которой стремится бесконечная последовательность или функция. Соответственно, различают предел последовательности и предел функции (в точке, на бесконечности). Считается также, что предел может быть равен бесконечности.
Содержание
Пределы
Предел последовательности
Пределом числовой последовательности {xn} называется число A, в ε-окрестность которого попадают все члены последовательности с номером больше номера N(ε).
Виды пределов
Свойства пределов
Для последовательностей {xn} и {yn} верны правила:
При xn и yn=C получаем:
При xn=C и yn получаем:
Предел функции
Пределом функции f{x} в точке a называется число A, в ε-окрестность которого попадают все значения функции в точках из δ-окрестности точки a.
Виды пределов
Свойства пределов
Для функций u=f(x) и v=g(x) верны правила:
При f(x) и g(x)=C получаем:
При f(x)=C и g(x) получаем:
Замечательные пределы:
Приёмы нахождения пределов:
Другие понятия:
Ссылки
- Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1970.