Гамма-функция
Гамма-функция — это специальная функция от комплексной переменной имеющая интегральное представление, для положительной действительной части аргумента в виде интеграла Эйлера второго рода, для отрицательной действительной части — интегральное представление Ганкеля.
Содержание
Обозначения[править]
x=Re(z) — действительная часть (абсцисса) числа;
y=Im(z) — мнимая часть (ордината) числа;
z=x+iy — аргумент — комплексное число;
Г(z) — гамма-функция.
Формулы:[править]
Интеграл Эйлера II рода[править]
Интегральное представление Ганкеля[править]
C — контур идёт из -∞ по отрицательной части действительной оси, обходит начало координат в положительном направлении (против часовой стрелки) и опять по отрицательной части оси абсцисс возвращается к исходной точке.
Свойства:[править]
Примеры:[править]
Другие функции:[править]
Ссылки[править]
- Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1970, стр.633.