Однородное дифференциальное уравнение
Однородные дифференциальные уравнения — это такие, в которых функция f(x,y) (равная производной y’) может быть представлена как функция отношения своих аргументов φ(y/x).
Будем рассматривать дифференциальные уравнения, разрешённые относительно производной.
Содержание
Обозначения
Введём обозначения:
x – переменная – аргумент функции;
y – переменная – функция;
y’ – производная функции;
y’=f(x,y) – общий вид дифференциального уравнения, разрешённого относительно производной.
Дифференциальное уравнение
Общее решение
Частное решение
Другие дифференциальные уравнения:
- с разделяющимися переменными;
- однородное;
- линейное;
- уравнение Бернулли;
- уравнение в полных дифференциалах;
- уравнение Клеро;
- уравнение второго порядка, не содержащее y и y’;
- уравнение второго порядка, не содержащее y;
- уравнение второго порядка, не содержащее x;
- однородное уравнение второго порядка с постоянными коэффициентами;
- неоднородное уравнение второго порядка с постоянными коэффициентами;
- уравнение n-ого порядка, содержащее только переменную x;
- однородное уравнение n-ого порядка с постоянными коэффициентами;
- неоднородное уравнение n-ого порядка с постоянными коэффициентами;
- общее дифференциальное уравнение.
Ссылки
- Бермант А.Ф., Араманович И.Г. Краткий курс математического анализа для втузов. М. Наука, 1973, стр.534.
- Участник:Logic-samara