Неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами
Неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами — это уравнения вида ay’’+by’+cy=f(x) (с правой частью).
Содержание
Обозначения
Введём обозначения:
x – переменная – аргумент функции;
y – переменная – функция;
a, b, c – постоянные коэффициенты;
y’ – производная функции;
y’’ – вторая производная функции;
f(x) – правая часть в дифференциальном уравнении.
Дифференциальное уравнение
– характеристическое уравнение
– корни характеристического уравнения.
Возможны три случая для корней характеристического уравнения:
- r1≠r2 - два действительных неравных корня при b2>4ac;
- r1=r2 - два действительных равных корня при b2=4ac;
- r1,2=α±βi - два сопряжённых комплексных корня при b2<4ac.
Введём дополнительные обозначения.
k – кратность корня в характеристическом уравнении;
Pn(x), Qn(x) – многочлены n-степени.
Общее решение
Другие дифференциальные уравнения:
- с разделяющимися переменными;
- однородное;
- линейное;
- уравнение Бернулли;
- уравнение в полных дифференциалах;
- уравнение Клеро;
- уравнение второго порядка, не содержащее y и y’;
- уравнение второго порядка, не содержащее y;
- уравнение второго порядка, не содержащее x;
- однородное уравнение второго порядка с постоянными коэффициентами;
- неоднородное уравнение второго порядка с постоянными коэффициентами;
- уравнение n-ого порядка, содержащее только переменную x;
- однородное уравнение n-ого порядка с постоянными коэффициентами;
- неоднородное уравнение n-ого порядка с постоянными коэффициентами;
- общее дифференциальное уравнение.
Ссылки
- Бермант А.Ф., Араманович И.Г. Краткий курс математического анализа для втузов. М. Наука, 1973, стр.569.
- Участник:Logic-samara