Уравнение в полных дифференциалах

Материал из Мегапедии
Версия от 09:11, 6 января 2021; Logic-samara (обсуждение | вклад) (начало)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Уравнения в полных дифференциалах — это уравнения, в которых левая часть является полным дифференциалом некоторой функции F(x,y) а правая равна нулю.

Будем рассматривать уравнения первого порядка в полных дифференциалах вида P(x,y)dx+Q(x,y)dy=0.

В том случае, когда функции P(x,y) и Q(x,y) и их частные производные непрерывны в односвязной области, уравнение P(x,y)dx+Q(x,y)dy=0 будет уравнением в полных дифференциалах, если ∂P(x,y)/∂y=∂Q(x,y)/∂x.

Обозначения

Введём обозначения:

x – переменная - аргумент функции;

y – переменная – функция;

dx – дифференциал аргумента;

dy – дифференциал функции;

F(x,y) – первообразная функция, при равенстве константе задающая неявно решение y=y(x).

Уравнение

ДИФ051.JPG

Общее решение

ДИФ052.JPG

Другие дифференциальные уравнения:

Ссылки

  • Бермант А.Ф., Араманович И.Г. Краткий курс математического анализа для втузов. М.: Наука, 1973, стр.540.
  • Участник:Logic-samara