Интерполяционная формула Ньютона назад
Интерполяция Ньютона назад — это определение значений многочлена n-ой степени (проходящего через заданные (n+1)-у точку) в заданной точке по формуле с помощью приращений назад.
Содержание
Обозначения:
x − заданная точка;
Nn(x) − значение формулы n-ого порядка в точке x;
(xj,yj) − точки (узлы) интерполяции (-n≤j≤n);
h − шаг по оси абсцисс;
q=(x-xn)/h − параметр заданной точки (q<0);
xj= x0+jh − абсцисса j-той точки (-n≤j≤n);
yj − ордината j-той точки (-n≤j≤n);
Δ1yj=yj+1-yj − j-ая конечная разность 1-ого порядка (-n≤j≤n);
Δiyj=Δi-1j+1-Δi-1yj − j-ая конечная разность i-ого порядка (i>1, -n≤j≤n).
Формула
Преимущество второй интерполяционной формулы Ньютона по сравнению с формулой Лагранжа состоит в том, что при изменении степени n у интерполяционного многочлена Ньютона требуется только добавить или отбросить соответствующее число стандартных слагаемых (это удобно на практике), тогда как интерполяционный многочлен Лагранжа требуется строить заново. На практике применение второй интерполяционной формулы Ньютона удобнее для равноотстоящих узлов или узлов с равными промежутками.
При n=1 вторая формула Ньютона имеет вид:
При n=2 вторая формула Ньютона имеет вид:
При n=3 вторая формула Ньютона имеет вид:
Другие формулы:
- Линейная интерполяция;
- Интерполяция каноническим многочленом;
- Интерполяционная формула Бесселя;
- Интерполяционная формула Бесселя на середину;
- Интерполяционная формула Гаусса вперёд (первая формула);
- Интерполяционная формула Гаусса назад (вторая формула);
- Интерполяционная формула Лагранжа;
- Интерполяционная формула Ньютона вперёд (первая формула);
- Интерполяционная формула Ньютона назад (вторая формула);
- Интерполяционная формула Стирлинга.
Ссылки
- Демидович Б. П., Марон И. А. Основы вычислительной математики. М.: Наука, 1970.