Совершенная конъюнктивная нормальная форма
Совершенная конъюнктивная нормальная форма (СКНФ) для логической функции – это конъюнкция различных элементарных дизъюнкций всех аргументов (либо самих, либо их отрицаний) данной функции, причём в одинаковом порядке. При этом таблицы истинности для логической функции и её СКНФ совпадают.
Содержание
Формула
Введём обозначения:
n – число аргументов функции;
(x1,x2,…,xn) – набор аргументов функции;
f(x1,x2,…,xn) – логическая функция;
fСКНФ(x1,x2,…,xn) – СКНФ логической функции;
arg[f(x1,x2,…,xn)=0] – фиксированный набор аргументов функции, обращающий функцию в 0;
argj[f(x1,x2,…,xn)=0] – значение аргумента xj в фиксированном наборе аргументов.
- Для логической функции выбираются лишь те комбинации, которые приводят логическое выражение в состояние нуля.
В элементарную дизъюнкцию записывается переменная без инверсии, если она в наборе равна 0, и с инверсией, если она равна 1.