Одноканальная СМО замкнутая без очереди — различия между версиями
м |
|||
Строка 1: | Строка 1: | ||
− | [[файл: | + | [[файл:СМО10k.png|thumb|300|Одноканальная замкнутая СМО без очереди]] |
− | '''Одноканальная [[СМО замкнутая без очереди]]''' — это [[система массового обслуживания]], в которой есть один канал обслуживания и возможна только одна заявка. Если заявка приходит, то она немедленно обслуживается каналом. | + | '''Одноканальная замкнутая [[СМО замкнутая без очереди|СМО без очереди]]''' — это [[система массового обслуживания]], в которой есть один канал обслуживания и возможна только одна заявка. Если заявка приходит, то она немедленно обслуживается каналом. |
== Описание модели == | == Описание модели == | ||
На вход одноканальной СМО поступает простейший поток заявок с интенсивностью '''λ'''. | На вход одноканальной СМО поступает простейший поток заявок с интенсивностью '''λ'''. | ||
Строка 12: | Строка 12: | ||
Состояние рассмотренной системы будем связывать с числом заявок, находящихся в системе. | Состояние рассмотренной системы будем связывать с числом заявок, находящихся в системе. | ||
== Граф состояний == | == Граф состояний == | ||
+ | <!--[[файл:СМО911.JPG]]--> | ||
+ | '''М/М/1/0''' – Одноканальная замкнутая СМО без очереди | ||
+ | |||
+ | [[файл:СМО10k.png]] | ||
[[файл:СМО911.JPG]] | [[файл:СМО911.JPG]] | ||
Версия 17:20, 14 августа 2025
Одноканальная замкнутая СМО без очереди — это система массового обслуживания, в которой есть один канал обслуживания и возможна только одна заявка. Если заявка приходит, то она немедленно обслуживается каналом.
Содержание
Описание модели
На вход одноканальной СМО поступает простейший поток заявок с интенсивностью λ.
Интенсивность простейшего потока обслуживания канала μ.
Если заявка приходит, то она принимается на обслуживание и обслуживается каналом,
После окончания обслуживания заявки канал освобождается.
Состояние рассмотренной системы будем связывать с числом заявок, находящихся в системе.
Граф состояний
М/М/1/0 – Одноканальная замкнутая СМО без очереди
Рассмотрим множество состояний системы:
S0 – в системе нет заявки, канал свободен;
S1 – в системе имеется заявка, она обслуживается каналом.
Система дифференциальных уравнений
Система дифференциальных уравнений, описывающих поведение системы, имеет вид:
Рассмотрим стационарный режим работы системы (при t→∞).
Система уравнений принимает вид:
Решим систему относительно p0,p1.
В результате получаем решение системы:
Основные характеристики системы
Другие одноканальные СМО:
Ссылки
- Овчаров Л.А. Прикладные задачи теории массового обслуживания, «Машиностроение», М.,1969.
- Участник:Logic-samara