Одноканальная СМО замкнутая без очереди — различия между версиями
м |
м |
||
Строка 19: | Строка 19: | ||
Рассмотрим множество состояний системы: | Рассмотрим множество состояний системы: | ||
− | '''S<sub>0</sub>''' – в системе нет заявки, канал свободен; | + | '''S<sub>0</sub>''' – в системе нет заявки, канал свободен, '''1'''-источник заявок; |
− | '''S<sub>1</sub>''' – в системе имеется заявка, она обслуживается каналом. | + | '''S<sub>1</sub>''' – в системе имеется '''1'''-заявка, она обслуживается '''1'''-каналом, источников заявок нет. |
== Система дифференциальных уравнений == | == Система дифференциальных уравнений == | ||
Система дифференциальных уравнений, описывающих поведение системы, имеет вид: | Система дифференциальных уравнений, описывающих поведение системы, имеет вид: |
Версия 18:03, 22 августа 2025
Одноканальная замкнутая СМО без очереди — это система массового обслуживания, в которой есть один канал обслуживания и возможна только одна заявка. Если заявка приходит, то она немедленно обслуживается каналом.
Содержание
Описание модели
На вход одноканальной СМО поступает простейший поток заявок с интенсивностью λ.
Интенсивность простейшего потока обслуживания канала μ.
Если заявка приходит, то она принимается на обслуживание и обслуживается каналом,
После окончания обслуживания заявки канал освобождается.
Состояние рассмотренной системы будем связывать с числом заявок, находящихся в системе.
Граф состояний
М/М/1/0 – Одноканальная замкнутая СМО без очереди (без отказов)
Рассмотрим множество состояний системы:
S0 – в системе нет заявки, канал свободен, 1-источник заявок;
S1 – в системе имеется 1-заявка, она обслуживается 1-каналом, источников заявок нет.
Система дифференциальных уравнений
Система дифференциальных уравнений, описывающих поведение системы, имеет вид:
Рассмотрим стационарный режим работы системы (при t→∞).
Система уравнений принимает вид:
Решим систему относительно p0,p1.
В результате получаем решение системы:
Основные характеристики системы
Другие одноканальные СМО:
- Одноканальная СМО без очереди;
- Одноканальная СМО с m-очередью;
- Одноканальная СМО с m-очередью и с ограниченным временем ожидания;
- Одноканальная СМО с бесконечной очередью;
- Одноканальная СМО замкнутая без очереди;
- Одноканальная СМО замкнутая с m-очередью;
- Одноканальная СМО замкнутая без очереди и с k-источниками;
- Одноканальная СМО замкнутая с m-очередью и с k-источниками.
Ссылки
- Овчаров Л.А. Прикладные задачи теории массового обслуживания, «Машиностроение», М.,1969.