Ряд

Материал из Мегапедии
Перейти к: навигация, поиск

Ряд — это бесконечная последовательность слагаемых или бесконечная сумма членов последовательности.

Ряд

Формула

РЯД01.png

Слагаемые ряда an называются членами ряда.

Знакопеременными называются ряды, члены которых поочерёдно имеют то положительный, то отрицательный знаки. Общий вид знакопеременного ряда задаётся следующей формулой:

РЯД011.png

Если члены ряда - числа, то ряд называется числовым, если же они являются функциями, то ряд называется функциональным.

Сумма первых n членов называется частичной суммой Sn.

РЯД02.png

Сходимость ряда

Числовой ряд называется сходящимся, если существует конечный предел последовательности его частичных сумм – этот предел называется суммой ряда; в противном случае ряд называется расходящимся.

Признаки сходимости:


Необходимый признак используется для определения расходимости ряда РЯД10.JPG.

Признак сравнения используется или для определения сходимости меньшего (доминируемого) ряда РЯД10.JPG или для определения расходимости большего (доминирующего) ряда РЯД20.JPG.

Признак Даламбера используется для определения сходимости или расходимости ряда РЯД10.JPG при условии РЯД33.JPG.

Радикальный признак Коши используется для определения сходимости или расходимости ряда РЯД10.JPG при условии РЯД43.JPG.

Интегральный признак Коши используется для определения сходимости или расходимости ряда РЯД10.JPG при условии существования интегрируемой функции РЯД51.JPG.

Признак Раабе используется для определения сходимости или расходимости ряда РЯД10.JPG.

Признак Лейбница используется для определения сходимости знакопеременного ряда РЯД70.JPG.

Другие ряды:

Другие понятия:

Ссылки

  • Кудрявцев В.А., Демидович Б.П. Краткий курс высшей математики. М.: «Наука», 1975.
  • Участник:Logic-samara