Площадь сектора лемнискаты Бернулли
Площадь сектора лемнискаты Бернулли — это число, характеризующее сектор лемнискаты Бернулли в единицах измерения площади.
Сектор лемнискаты Бернулли — это часть лемнискаты Бернулли, отсекаемая двумя прямыми (радиусами), проходящими через центр симметрии.
Рассмотрим секторы лемнискаты Бернулли, отсекаемые двумя прямыми, проходящими через центр симметрии в первом квадранте.
Обозначения
Введём обозначения:
F1 — правый фокус;
F2 — левый фокус;
c — половина расстояния между фокусами;
(x2+y2)2=2c2(x2-y2) — уравнение лемнискаты Бернулли;
φ1 — угол (меньший) первой точки сектора;
φ2 — угол (больший) второй точки сектора;
φ — независимая переменная;
r2=2c2cos2φ — уравнение лемнискаты Бернулли в полярных координатах;
Sсект.лемн — площадь сектора лемнискаты Бернулли.
Формулы:
- Площадь лемнискаты Бернулли (из двух лепестков) равна Sлемн=2с2.
Вывод формул:
- Для вывода используется формула "площадь плоской фигуры" в полярных координатах.
Другие фигуры:
- плоская фигура;
- круг;
- сегмент круга;
- сектор круга;
- сегмент правильного многоугольника;
- сектор правильного многоугольника;
- серп;
- сегмент параболы;
- эллипс;
- сегмент эллипса;
- сектор эллипса;
- серп эллипса;
- сегмент гиперболы;
- арка синусоиды;
- арка косинусоиды;
- фигура, ограниченная тангенсоидой и осью абсцисс;
- фигура, ограниченная котангенсоидой и осью абсцисс;
- арка циклоиды;
- сектор кардиоиды;
- фигура, ограниченная цепной линией и осью абсцисс;
- фигура, ограниченная трактрисой и осью абсцисс;
- сектор лемнискаты Бернулли.