Неравенство Минковского — различия между версиями
(начало) |
м |
||
(не показаны 4 промежуточные версии этого же участника) | |||
Строка 1: | Строка 1: | ||
− | + | '''Корень p-степени из суммы p-степеней модулей сумм каждой пары n чисел с другими n числами не больше суммы корней p-степени из сумм p-степеней модулей всех первых элементов пар и вторых элементов пар.''' | |
− | == | + | == Обозначения == |
− | |||
− | |||
'''n''' – число чисел в наборах; | '''n''' – число чисел в наборах; | ||
Строка 10: | Строка 8: | ||
'''b<sub>i</sub>''' – '''i'''-ое число. | '''b<sub>i</sub>''' – '''i'''-ое число. | ||
− | + | == Формула неравенства == | |
− | [[файл:НМИ01. | + | [[файл:НМИ01.png]] |
− | *Если множества чисел '''{a<sub>i</sub>}''' и '''{b<sub>i</sub>}''' считать векторами '''n'''-мерного пространства, то неравенство Минковского означает, что '''p | + | *Если множества чисел '''{a<sub>i</sub>}''' и '''{b<sub>i</sub>}''' считать векторами '''n'''-мерного пространства, то неравенство Минковского означает, что '''p-норма суммы векторов не более суммы p-норм векторов'''. |
== Следствие == | == Следствие == | ||
− | [[файл:НМИ02. | + | [[файл:НМИ02.png]] |
== [[Неравенства|Другие неравенства:]] == | == [[Неравенства|Другие неравенства:]] == | ||
{{Список Нер}} | {{Список Нер}} | ||
== Ссылки == | == Ссылки == | ||
*Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1970. | *Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1970. | ||
− | |||
[[Категория:Математика]] | [[Категория:Математика]] |
Текущая версия на 13:01, 14 февраля 2025
Корень p-степени из суммы p-степеней модулей сумм каждой пары n чисел с другими n числами не больше суммы корней p-степени из сумм p-степеней модулей всех первых элементов пар и вторых элементов пар.
Обозначения
n – число чисел в наборах;
p – число большее или равное 1;
ai – i-ое число;
bi – i-ое число.
Формула неравенства
- Если множества чисел {ai} и {bi} считать векторами n-мерного пространства, то неравенство Минковского означает, что p-норма суммы векторов не более суммы p-норм векторов.
Следствие
Другие неравенства:
- неравенство n-степени числа;
- неравенство Йенсена;
- неравенство Коши;
- неравенство p-ичных средних;
- обобщённое неравенство средних;
- неравенство взвешенных p-ичных средних;
- неравенство Коши-Буняковского;
- интегральное неравенство Коши-Буняковского;
- неравенство Минковского;
- обобщённое неравенство Минковского;
- интегральное неравенство Минковского;
- неравенство Гёльдера;
- обобщённое неравенство Гёльдера;
- интегральное неравенство Гёльдера;
- неравенство Фань Цзы;
- неравенство Маркова;
- неравенство Чебышёва.
Ссылки
- Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1970.