Неравенство Йенсена

Материал из Мегапедии
Перейти к: навигация, поиск
Неравенство Йенсена для f(x) выпуклой вверх
Неравенство Йенсена для f(x) выпуклой вниз

Неравенство Йенсена – выпуклая вверх функция от линейной комбинации чисел не менее линейной комбинации функций от этих чисел, выпуклая вниз функция от линейной комбинации чисел не более линейной комбинации функций от этих чисел.

Геометрический смысл: график выпуклой вверх функции расположен над хордой, график выпуклой вниз функции расположен под хордой.

Обозначения

n – число чисел;

xii-ое число, 1≤i≤n;

pii-ая положительная дробь – i-ый коэффициент линейной комбинации, 0<pi<1.

f(x) – функция (выпуклая вверх или вниз);

p1+p2+…+pn=1 – свойство коэффициентов линейной комбинации;

p1x1+p2x2+…+pnxn – линейная комбинация чисел;

p1f(x1)+p2f(x2)+…+pnf(xn) – линейная комбинация функций.

Формула неравенства

Функция выпуклая вверх

НЙ01.png

Функция выпуклая вниз

НЙ02.png

Следствия

Полагая, что p1=p2=…=pn=1/n, получаем.

Функция выпуклая вверх

НЙ11.png

Функция выпуклая вниз

НЙ12.png

Другие неравенства:

Литература

  • Зорич, В. А., Математический анализ. Ч.I, М, МЦНМО, 2012, с.289—290.
  • Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, М, ФИЗМАТЛИТ, 2001, Т.1, с.336—337.

Ссылки