Гипотеза о нормальном законе распределения
Гипотеза о нормальном законе распределения — это гипотеза о соответствии распределения случайной величины нормальному распределению, N(μ,σ2).
Содержание
Обозначения
n — число значений в интервальном ряду;
m — число интервалов;
xj-1 — нижняя граница j-ого интервала, 1≤j≤m;
xj — верхняя граница j-ого интервала, 1≤j≤m;
mj — эмпирическая частота значений случайной величины в j-ом интервале;
μ — средняя нормального распределения;
σ — среднеквадратическое отклонение нормального распределения;
D=σ2 — дисперсия нормального распределения;
pj — теоретическая вероятность значений случайной величины в j-ом интервале;
u — переменная стандартизованной случайной величины;
Φ(u) — интегральная функция распределения стандартизованной случайной величины;
α — уровень значимости — вероятность ошибки 1-го рода;
X2 — переменная X2-распределения.
k — число степеней свободы, k=m-3;
FX2(X2,k) — интегральная функция X2-распределения.
Гипотеза о распределении:
— статистика, имеющая X2-распределение c (k=m-3) степенями свободы, где .
Для проверки гипотезы о нормальном распределении эмпирического распределения, строится интервальный ряд и определяются интервальные частоты (mj) и теоретические вероятности (pj).
H0: закон нормального распределения N(μ,σ2);
H1: другой закон распределения;
Критерий 1
— критерий отклонения гипотезы H0.
Критерий 2
— критерий принятия гипотезы H0.
Правило ван дер Вардена
Если для всех m интервалов, фактических частот (mj), теоретические вероятности pj больше табличного pmin (соответствующего числу степеней свободы k=m-3), то гипотеза H0 проверяется при этих данных.
Если есть крайние интервалы для которых теоретические вероятности pj меньше допустимого табличного pmin, то такие крайние интервалы объединяются с соседними (соответствующими интервалами) и гипотеза H0 проверяется для изменённого m, для изменённых фактических частот (mj), для изменённых теоретических вероятностей (pj) и для изменённого числа степеней свободы (k=m-3).
Таблица допустимых теоретических вероятностей
Другие гипотезы:
- Гипотеза о средней равной числу при известной дисперсии;
- Гипотеза о средней равной числу при неизвестной дисперсии;
- Гипотеза о дисперсии равной числу при известной средней;
- Гипотеза о дисперсии равной числу при неизвестной средней;
- Гипотеза о равенстве дисперсий;
- Гипотеза о равенстве межгрупповой и внутригрупповой дисперсий;
- Гипотеза о равенстве нескольких дисперсий;
- Гипотеза о равенстве средних при известной дисперсии;
- Гипотеза о равенстве средних при неизвестной дисперсии;
- Гипотеза о равенстве средних при неизвестных дисперсиях;
- Гипотеза о вероятности равной числу;
- Гипотеза о равенстве вероятностей;
- Гипотеза о нормальном законе распределения;
- Гипотеза об отсутствии линейной корреляционной связи;
- Гипотеза о коэффициенте линейного уравнения регрессии равном нулю;
- Гипотеза о коэффициенте линейного уравнения множественной регрессии равном нулю;
- Гипотеза о значимости линейного уравнения регрессии;
- Гипотеза о значимости линейного уравнения множественной регрессии;
- Гипотеза о коэффициенте корреляции равном числу;
- Гипотеза о коэффициенте корреляции равном нулю;
- Гипотеза о равенстве коэффициентов корреляции.
Ссылки
- Кремер Н.Ш. Теория вероятностей и математическая статистика. М.: Юнити, 2004, стр.375.
- Участник:Logic-samara