СМО с бесконечным числом каналов — различия между версиями
м |
м |
||
Строка 51: | Строка 51: | ||
Суммируя в системе уравнения с первого до '''i'''-го ('''i=1,∞'''), получаем упрощённый вид системы. | Суммируя в системе уравнения с первого до '''i'''-го ('''i=1,∞'''), получаем упрощённый вид системы. | ||
− | Решим систему относительно '''p<sub>0</sub>,p<sub>1</sub>,…,p<sub> | + | Решим систему относительно '''p<sub>0</sub>,p<sub>1</sub>,p<sub></sub>,…,p<sub>i-1</sub>,p<sub>i</sub>,p<sub>i+1</sub>,…'''. |
<!--[[файл:СМО74.JPG]]--> | <!--[[файл:СМО74.JPG]]--> |
Версия 12:15, 27 августа 2025
СМО с бесконечным числом каналов — это система массового обслуживания, в которой любая заявка немедленно обслуживается любым одним каналом.
Содержание
Описание модели
На вход СМО с бесконечным числом каналов поступает простейший поток заявок с интенсивностью λ.
Интенсивность простейшего потока обслуживания каждого канала μ.
Если заявка застаёт все каналы свободными, она принимается на обслуживание и обслуживается любым одним из каналов.
Если заявка застаёт занятым хотя бы один канал, то она принимается на обслуживание любым из свободных каналов и обслуживается до конца.
После окончания обслуживания одной заявки освобождается один канал.
Состояние рассмотренной системы будем связывать с числом заявок, находящихся в системе.
Граф состояний
М/М/∞ – СМО с бесконечным числом каналов.
Рассмотрим множество состояний системы:
S0 – в системе нет ни одной заявки, все каналы свободны;
S1 – в системе имеется 1-заявка, она обслуживается 1-каналом;
S2 – в системе имеется 2-заявки, они обслуживается 2-каналами;
…;
Si-1 – в системе имеется (i-1)-заявок, они обслуживаются (i-1)-каналами;
Si – в системе имеется i-заявок, они обслуживаются i-каналами;
Si+1 – в системе имеется (i+1)-заявок, они обслуживаются (i+1)-каналами;
….
Система дифференциальных уравнений
Система дифференциальных уравнений, описывающих поведение системы, имеет вид:
Рассмотрим стационарный режим работы системы (при t→∞).
Система уравнений принимает вид:
Суммируя в системе уравнения с первого до i-го (i=1,∞), получаем упрощённый вид системы.
Решим систему относительно p0,p1,p,…,pi-1,pi,pi+1,….
В результате получаем решение системы:
Основные характеристики системы
Другие СМО:
- СМО n-канальная без очереди;
- СМО n-канальная без очереди и со случайным выбором канала;
- СМО n-канальная с m-очередью;
- СМО n-канальная с m-очередью и с ограниченным временем ожидания;
- СМО с бесконечным числом каналов;
- СМО n-канальная с бесконечной очередью;
- СМО n-канальная без очереди и с взаимопомощью;
- СМО n-канальная с m-очередью и с взаимопомощью;
- СМО замкнутая n-канальная без очереди;
- СМО замкнутая n-канальная с m-очередью;
- СМО замкнутая n-канальная без очереди и с k-источниками;
- СМО замкнутая n-канальная с m-очередью и с k-источниками.
Ссылки
- Овчаров Л.А. Прикладные задачи теории массового обслуживания, «Машиностроение», М.,1969.