Геометрическое распределение — различия между версиями
(начало) |
|||
Строка 7: | Строка 7: | ||
'''q''' — вероятность не наступления события в одном испытании; | '''q''' — вероятность не наступления события в одном испытании; | ||
− | ''' | + | '''N''' — множество натуральных чисел; |
− | '''F<sub>X</sub>(x)''' — интегральная функция распределения — функция вероятности; | + | '''p<sub>X</sub>(x)''' — функция [[Вероятность|вероятности '''X=x''']]; |
+ | |||
+ | '''F<sub>X</sub>(x)''' — интегральная функция распределения — функция вероятности '''X<x'''; | ||
'''M(X)''' — [[Средняя дискретной случайной величины|средняя]] — математическое ожидание; | '''M(X)''' — [[Средняя дискретной случайной величины|средняя]] — математическое ожидание; | ||
Строка 17: | Строка 19: | ||
'''σ(X)''' — [[Среднеквадратическое отклонение дискретной случайной величины|среднеквадратическое отклонение]]. | '''σ(X)''' — [[Среднеквадратическое отклонение дискретной случайной величины|среднеквадратическое отклонение]]. | ||
== Функции распределения: == | == Функции распределения: == | ||
− | === | + | === Функция вероятности === |
[[файл:ГЕОМ01.JPG]] | [[файл:ГЕОМ01.JPG]] | ||
=== Интегральная функция === | === Интегральная функция === |
Версия 18:58, 3 апреля 2023
Геометрическое распределение — это распределение дискретной случайной величины, равной номеру первого наступления события в независимых испытаниях (их бесконечное число), в каждом из которых оно может произойти с одной и той же вероятностью p.
Содержание
Обозначения
X — случайная величина;
p — вероятность наступления события в одном испытании;
q — вероятность не наступления события в одном испытании;
N — множество натуральных чисел;
pX(x) — функция вероятности X=x;
FX(x) — интегральная функция распределения — функция вероятности X<x;
M(X) — средняя — математическое ожидание;
D(X) — дисперсия;
σ(X) — среднеквадратическое отклонение.
Функции распределения:
Функция вероятности
Интегральная функция
Формулы:
Вывод формул:
Математическое ожидание
1-й способ
2-й способ
Дисперсия
Другие распределения:
Распределения ДСВ:
- распределение Бернулли;
- биномиальное распределение;
- геометрическое распределение;
- гипергеометрическое распределение;
- дискретное равномерное распределение;
- распределение Пуассона;
Распределения НСВ:
- бета-распределение;
- распределение Вейбулла;
- гамма-распределение;
- квадратичное распределение;
- распределение Коши;
- распределение Лапласа;
- линейное распределение;
- логистическое распределение;
- логнормальное распределение;
- нормальное распределение;
- распределение Парето;
- показательное распределение;
- равномерное распределение;
- распределение Рэлея;
- распределение Сосновского;
- распределение Стьюдента;
- распределение Фишера-Снедекора;
- распределение Хи-квадрат;
- экспоненциальное распределение;
- Эль-распределение.
Ссылки
- Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1970, стр.512.
- Участник:Logic-samara